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The stability of a laminar mixed-convection boundary layer adjacent to a vertical 
isothermal surface is examined, using linear stability theory and the parallel-flow 
approximations. The analysis is valid when the imposed forced-convection effects are 
small compared to natural-convection effects. The stability equations are solved 
numerically for aiding and opposing forced-convection effects, for Pr = 0.733 (air) 
and 6.7 (water). For aiding mixed convection in air, a new feature was found. A 
small, separated region of instability arises upstream of the ‘conventional ’, or 
‘primary’, neutral curve. In  this region, selective amplification of a narrow band of 
disturbance frequencies occurred, but disturbance growth was small. Further 
downstream, disturbance growth rates in flows with an aiding free stream are slower 
than in natural convection. The opposite is true for an opposing free stream in air. 
Selective disturbance amplification occurred downstream for all conditions, as in 
natural convection. In  water, an aiding flow was destablizing compared to  natural 
convection, and an opposing flow was stabilizing. Evidence of a separated upstream 
region of instability was also found for aiding mixed convection in water. However, 
converged solutions could not be obtained in this circumstance. 

1. Introduction 
Mixed-convection flows, which result from simultaneous buoyancy and forced flow 

effects, arise in environmental and technological processes ranging from atmospheric 
convection to electronics cooling. However, until recently, these flows have received 
relatively little attention. A thorough review of the work to date in this area is given 
by Gebhart et al. (1988). A notable feature of external laminar mixed-convection 
boundary-layer flows is that forced convection dominates the buoyancy effect near 
the leading edge of a developing flow. Natural convection dominates farther 
downstream. 

However, a vigorous laminar flow eventually becomes unstable and turbulent 
downstream. Visualizations by Eckert & Soehngen (1951) indicated that the 
transition to turbulence in purely buoyancy-driven (natural convection) flows begins 
with the amplification of small disturbances in a laminar flow. Since the disturbances 
are small initially, linear stability theory has been widely used to predict the 
conditions of initial instability and subsequent downstream disturbance growth. 
Excellent agreement between linear stability theory and experimental data has been 
obtained (see Gebhart et al. 1988). 

In  general, only a narrow band of disturbance component frequencies is strongly 
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amplified in external natural-convection flows. This ' selective amplification ' was 
first demonstrated by the calculations of Dring & Gebhart (1968). Experiment 
(Jaluria & Gebhart 1975) and theory (Audunson & Gebhart 1976) have shown that 
this selectivity persists downstream into the region where nonlinear effects and 
secondary mean flows develop. This behaviour differs from that of external forced- 
convection boundary layers, which amplify a wide band of disturbance component 
frequencies. 

Although disturbance amplification in external natural-convection flows is fairly 
well understood, external mixed-convection flows have received relatively little 
attention. The earliest studies of mixed-convection instability examined flows 
adjacent to vertical (Mucoglu & Chen 1978), inclined (Chen & Moutsoglou 1979), and 
horizontal (Chen & Mucoglu 1979) isothermal flat surfaces. Since similarity does not 
arise for mixed-convection flow parallel to a flat surface, the undisturbed flow and 
temperature solutions were obtained using the local non-similarity method. 

The local non-similarity method is an approximate method of solution of the 
boundary-layer equations for non-similar flows. The equations are first subjected to 
a coordinate transformation, and non-similar terms in the equations are defined as 
new variables. The transformed boundary-layer equations are then differentiated to 
provide differential equations for these new variables. Such a procedure of defining 
new variables and differentiating the transformed boundary-layer equations may 
continue indefinitely. However, a t  some level non-similar terms are omitted from the 
formulation, to close the system of equations. This measure makes the accuracy of 
the local non-similarity method difficult to assess. 

The results of Mucoglu & Chen (1978), Chen & Moutsoglou (1979) and Chen & 
Mucoglu (1979) were limited to  small values of a non-dimensional buoyancy 
parameter, which correspond to the forced-convection-dominated conditions near 
the leading edge of the plate. Neutral stability curves were given for Pr = 0.7 and 7.0, 
which are characteristic of air and water, respectively. I n  both cases, the flow along 
vertical or inclined surfaces was more stable when the forced flow was aided by the 
buoyancy effect. The stability of such flows decreased as the surface was inclined 
from the vertical. For flow over horizontal plates, however, flows with aiding 
buoyancy (buoyancy force directed away from the surface) were less stable than 
those with opposing buoyancy. 

In  these earlier studies, results were given in terms of a downstream x-dependent 
buoyancy parameter. This leads to some inconvenience in determining the location 
of neutral stability. This difficulty was overcome by Carey & Gebhart (1983) in an 
investigation of the stability of mixed-convection flow adjacent to a vertical surface 
dissipating a uniform heat flux. The undisturbed flow for large downstream distances 
was determined using matched asymptotic expansions (Carey & Gebhart 1982). All 
results are in terms of an x-independent parameter which is proportional to the free- 
stream velocity, u,. In  air, the mixed convection had a strong effect on both the 
stability and the disturbance-amplification characteristics. The effect of a forced flow 
was much weaker in water. Their measurements in air agreed well with the 
theoretical results. 

Lee, Chen & Armaly (1987a, b,  1988) have studied the stability of aiding mixed 
convection adjacent to  a vertical and inclined isothermal flat surface. The first study 
considers flows with small forced-convection effects, while the second two encompass 
the entire mixed-convection regime. The disturbance equations used in all of these 
studies include some of the effects of the non-parallelism of the base flow. However, 
any attempt to  include non-parallel flow effects must be done in a consistent manner. 
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As shown by Wakitani (1985), for example, some higher-order boundary-layer terms 
appear in conjunction with the first-order corrections for non-parallel flow effects. 
These higher-order terms were not included by Lee et al. Also, only neutral stability 
curves were given. The downstream growth characteristics of disturbances were not 
determined. 

The present study concerns the stability of a mixed-convection flow far from the 
leading edge of an isothermal, vertical flat surface. This is a buoyancy-driven flow 
subject to a relatively small forced flow effect. Perturbation expansions are used to 
determine the undisturbed flow. A consistent linear stability theory is then used to 
obtain both neutral stability and constant disturbance-amplification contours, for 
Pr = 0.733 (air) and Pr = 6.7 (water). Results are presented for both aiding and 
opposing mixed-convection flows. 

2. Undisturbed flow solutions 
The undisturbed laminar mixed-convection flow is first determined for use in the 

disturbance analysis. This flow is adjacent to a flat vertical surface at uniform and 
constant temperature to (see figure 1) .  A vertical forced flow with uniform free-stream 
velocity, u,, and free-stream temperature, t , ,  is present. All fluid properties are 
assumed constant, except for the density. Then, the Boussinesq approximations are 
made. 

The solutions for conditions far from the leading edge of the plate are desired. 
Perturbation techniques have been used by Eshghy (1964), Szewcyzk (1964) and 
Merkin (1969) to study this flow. Merkin noted the omission of necessary logarithmic 
terms in the second-order expansions of the earlier investigators. The resulting 
analysis is outlined below, with some changes in the definitions of dimensionless 
parameters. 

A dimensionless stream function, f ( x ,  q ) ,  and dimensionless temperature, O(x, q ) ,  
are defined in terms of the usual stream function, ~ ( x ,  y ) ,  and difference between the 
local and ambient fluid temperatures, t (x ,  y) - t ,  : 

where 

and 

The coordinate x is measured vertically from the leading edge of the surface, and y 
is the coordinate normal to the surface (see figure 1). The fluid properties v and St are 
the kinematic viscosity and thermal expansion coefficient, respectively. The 
acceleration due to gravity is g .  

The mixed-convection flow under consideration does not admit similarity 
solutions. However, far from the leading edge of the surface, the buoyancy effect 
becomes relatively much larger than the forced-convection effect. Therefore, a 
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(4 (b )  
FIQURE 1. Schematic representation of mixed-convection flow adjacent to a vertical isothermal 
surface : (a) aiding mixed convection : (b) opposing mixed convection. The buoyancy force is 
directed upward in each case. 

natural-convection flow is perturbed to include a small free-stream velocity. The 
perturbation expansions are 

f ( z , r )  = f o ( T ) + E ( X ) f i ( r ) + . . . ,  (2.5) 

O(z, 7) = &(r)  +w 4(r)  + . . . , (2.6) 

where f,(r) and O,(q) are a natural-convection flow in a quiescent ambient medium, 
and the perturbation parameter E(X) is defined as 

Re, €(X) = 4- 
G 2 ( x )  ’ 

U W X  Re, = -, 
V 

with G(x) defined by (2.4). 
It is convenient to present results in terms of an x-independent parameter R which 

is proportional to the vigour of the forced flow. This is achieved by dividing Re, by 
the power of Gr,, which eliminates the x-dependence. The result is 

where we take the real root in (2.9). When R is positive u, and the buoyancy force 
are in the same direction. This is called an aiding mixed-convection flow. An 
opposing mixed-convection flow arises when u, and the buoyancy force are in 
opposite directions (R < 0). Natural convection occurs when u, = 0 (R = 0). 
Examples of aiding and opposing mixed-convection flows with upwardly directed 
buoyancy forces are shown in figures 1 (a) and 1 ( b ) ,  respectively. 

Using (2.4) and (2.9) with (2.7) yields 

B ( X )  = R/Gt. (2.10) 
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FIQURE 2. Undisturbed flow solutions for Pr = 0.733 (air). 

From this point onward only the first two terms in the expansions (2 .5)  and (2 .6)  
are considered. This is consistent with the boundary-layer and parallel-flow 
approximations which will be made in deriving the disturbance equations. 

The expansions (2 .5)  and (2.6) are substituted into the boundary-layer equations. 
Using the Boussinesq approximations and neglecting viscous dissipation and 
pressure work in the energy equation, the governing equations for$,, fl, O,, and 8, are 

( 2 . 1 1 ~ )  

(2.11b) 

where Pr is the Prandtl number : 
V P r = - ,  
at 

(2.13) 

and where at is the thermal diffusivity of the fluid. The associated boundary 
conditions are 

fo(o) =j;(o) = eo(o)-i =f;(q = eo(m) = 0, (2.14 a )  
fl(o) =f; (o )  = el(o) =f ; (q- i  = e l ( q  = 0. (2.14b) 

The system (2 .11) ,  (2 .12) ,  (2.14) was solved numerically using a fourth-order 
predictor-corrector method with a shooting technique. The boundary conditions at 
infinity were replaced with asymptotic solutions to (2.11) and (2.12),  valid as q+ co 
(Brewster 1988). These were used as starting values at some large 7 = qedge. The 
integration proceeded inward from qedge toward the surface at  q = 0. 

Numerical solutions for the functions f;, Bo, f; and 0, are plotted in figures 2 and 
3 for Pr = 0.733 and 6.7,  respectively. The functions f; and 0, are the natural- 
convection components, and f; and 8, are the first-order corrections for forced- 
convection effects. The functions f; and have not previously appeared in the 
literature for Pr = 6.7. 
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FIGURE 3. Undisturbed flow solutions for Pr = 6.7 (water). 

3. Disturbance equations 
Linear stability theory is used to  derive equations governing the behaviour of 

small disturbances which arise in the mixed-convection flow. The velocity 
components, temperature and pressure are each expressed as the sum of a mean and 
a disturbance component : 

u = a+u’, 2) = U+V’, t = C+t’, p = p + p ’ .  (3.1 a-d) 

The stream function and temperature disturbance components are taken to be of the 
form 

where (3.3) 

Here, Oi is taken as complex and as real. Physically, the real part of Oi is then the 
disturbance wavenumber. The imfiginary part is the downstream amplification rate. 
The disturbance frequency is p. Both $(y) and s(v)  are, in general, complex 
functions of the real variable 7. 

To obtain the disturbance equations, (3.1) are substituted into the two-dimensional 
Navier-Stokes equations, with the Boussinesq approximations. After subtracting 
the boundary-layer equations in the mean quantities, all nonlinear terms in the 
disturbance quantities are omitted. The parallel-flow approximations are then 
employed. These amount to neglecting several small %-dependences, as discussed in 
detail by Hieber & Gebhart (1971). 

Gaster (1974) has used a linear stability theory which accounts for non-parallelism 
in the base flow to study the instability of the Blasius flow. Wakitani (1985), 
following the method of Gaster, has examined non-parallel-flow effects on the 
instability of line-source plumes. The parallel-flow approximations are the first 
approximation in a more extensive theory which includes non-parallel-flow effects. 
For the Blasius flow and the line-source plume, the first corrections to the 
eigenfunctions and amplification rate are O(Re;$ and O(G-’), respectively. The 
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smallest value of G for which instability was found for any of the conditions 
considered in this study was 17.32. Therefore, non-parallel-flow effects would, a t  
most, amount to approximately a 6% correction. 

After the above approximations are made, the momentum equations are combined 
to eliminate the disturbance pressure. Then, (3.2) and (3.3) are substituted into the 
vorticity and energy equations. The resulting disturbance-amplitude equations, 
sometimes called the Orr-Sommerfeld equations, are 

{s"-a2s}, 
(f---)s-8'$ P = - 1 

iaG Pr 

where a and /3 are dimensionless quantities defined as 

16x2 
G vG3 a =-a 4x 1 = a,+ia,, @=-I 

( 3 . 4 ~ )  

(3.4b) 

(3.5a, b )  

The primes on f(x, 7)  and O(x, 7)  in (3.4) denote partial differentiation with respect to 
7, while the primes on $(7) and s(7) denote ordinary differentiation with respect to 
8.  

As first discussed by Knowles & Gebhart (1968), thermal disturbances are damped 
out a t  a surface of relatively large thermal capacity, so s(0) = 0. This is assumed here. 
The complete set of disturbance boundary conditions is then 

$ ( O )  = $'(O) = s(0) = $(a) = $'(co) = s (co )  = 0. (3.6) 
The eigensystem defined by (3.4) and (3.6) is sixth order, coupled, and linear in the 

eigenfunctions $(7) and ~(7). The eigenvalues are any two of a,, ai, P or G. The 
remaining two are specified. The eigenvalues and eigenfunctions are then determined 
by numerical integration. This procedure is discussed in the following section. 

4. Numerical integration procedure 
As noted by Hieber & Gebhart (1971), the eigenfunctions $(7) and s(7) may be 

expressed in terms of six pairs of linearly independent solutions. Three pairs may be 
shown to be exponentially large as 7-+ co. These solutions cannot satisfy the 
boundary conditions (3.6) at the outer edge of the disturbance boundary region. 
Therefore, each eigenfunction is written in terms of the remaining three pairs of 
solutions : 

$(V) = Bl $1(7)+B!Z $2(71)+& #3(7)7 (4.1 a )  

5 ( T )  = B, Sl(7) +B, %(7) +B,53(7), (4.1 b)  

where B,, B2 and B, are complex constants. The constant B, may be chosen as unity. 
This scales the disturbance magnitude arbitrarily. 

Points on the neutral stability curve (ai = 0) are to be found first. Values for Pr, W 
and G are chosen, and guesses are then made for the eigenvalues a, and P. The 
solution scheme consists of integrating the disturbance equations separately for each 
of the three pairs of linearly independent solutions. All integrations were 
accomplished using a fourth-order predictor-corrector method. 

Each integration began at the outer edge of the disturbance boundary region, 
using asymptotic solutions to the disturbance equations (3.4) there to replace the 
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boundary conditions a t  infinity (Brewster 1988). Each integration proceeded inward, 
from a large 9 = yedge, to the surface (at 7 = 0). When integration for each of the 
three pairs of linearly independent solutions was complete, two of the disturbance 
boundary conditions a t  7 = 0 were used to compute the complex constants B,  and B,. 
The third boundary condition a t  7 = 0 was satisfied only if the guessed values for a, 
and /3 were correct. A Newton-Raphson technique was used to provide improved 
values of a, and p. Iteration continued in this way until the third boundary condition 
at  7 = 0 was satisfied, to  within some specified accuracy (typically Each 
application of this procedure yields one point on the neutral stability curve, for the 
specified values of Pr and R. 

The downstream disturbance growth characteristics were then determined. This 
growth is expressed as the ratio of the magnitude of a disturbance frequency 
component, at a downstream location, x = L ,  to its magnitude at the upstream 
location of neutral stability, x = xN. The disturbance magnitude a t  an arbitrary x 
location is given by 

Consistent with the parallel-flow approximations, the algebraic x-dependence of G 
and $ may be neglected, compared to  the exponential x-dependence. Then 

A, = vG$(v)exp (-Oi,x). (4.2) 

(4.3) 

and integration at constant disturbance frequency, /3, from xN to a downstream 
location x = L vields 

where A is the disturbance amplification parameter. Using (2.4) and (3.5a),  A may 
be expressed as 

(4.5) 

where G, = G(x,) and G, = G(L) .  The integration in (4.5) is carried out a t  constant 
B,  defined as 

Note that the x-indFpendent dimensionless frequency, B, is proportional to the 
physical frequency, f. 

From (4.4) and (4.5), the A = 0 contour is the neutral (ai = 0) curve. Contours of 
constant A, at selected values greater than zero, were computed numerically. The 
simple trapezoidal rule was used to numerically evaluate the integral in (4.5). The 
resulting contours of constant A indicate the growth of a particular disturbance 
component as it is convected downstream, past the neutral curve, into the region of 
instability. 

5. Results 
In  this section, results are given in the form of constant-A contours and 

eigenfunctions, for aiding and opposing mixed-convection flows, in air and in water. 
These results are interpreted by comparing them with each other, and with results 
for natural-convection flows. 
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FIGURE 4. Amplification contours for aiding mixed convection (---, R = 4) and natural convection 
(-, R =  0) in air (Pr = 0.733). The horizontal lines are the most amplified frequencies 
downstream. 

5.1. Aiding mixed convection in air 
Figure 4 compares constant-A contours for natural convection, R = 0, and for 

aiding mixed convection, R = 4, in air (Pr = 0.733) as the solid and dashed curves, 
respectively. Recall that  ai = 0 (or A = 0) represents neutral stability. These results 
are also characteristic of many other common gases. For example, the range 
0.6 < Pr < 0.8 includes helium, hydrogen, oxygen, nitrogen and carbon dioxide. The 
value of R for Pr = 0.733 is limited to 4 to ensure that u, is less than the local 
maximum natural convection velocity which would arise in the absence of forced 
flow. 

As discussed in the introduction, natural-convection flows selectively amplify a 
very narrow band of disturbance component frequencies downstream. This effect 
also arises in mixed convection. The solid and dashed horizontal lines on figure 4 are 
the disturbance component frequencies, in terms of B, which are the most highly 
amplified as they are convected downstream, for natural and aiding mixed 
convection, respectively. These are chosen on the basis of a downstream location 
where A = 8 (not shown for R = 4). The most amplified disturbance frequency far 
downstream, for aiding mixed convection, is seen to be B =  0.56, compared to 
B = 0.41 for natural convection. Similar qualitative beha-viour was seen by Carey & 
Gebhart (1983) for a uniform-heat-flux surface condition: 

A very unexpected result of these calculations was that two neutral curves were 
found for aiding mixed convection in air. The expected, or ‘primary’, neutral curve 
for R = 4 lies a t  larger G .  However, there is also a secondary, oval-shaped neutral 
curve upstream of this. This secondary region of instability is a very unusual feature, 
although a similar contour was seen by Lee et al. (1987 b)  for this flow. 

Enlargements of this oval region of instability are shown in figure 5 ,  in terms of 
both ui and A. The gaps near the top and bottom of the ovals are regions where 
converged eigenvalues and eigenfunctions could not be obtained. The contours on 
the far right-hand sides of figures 5 ( a )  and 5 ( b )  are the ‘nose ’ of the primary neutral 
curve, shown as a dashed curve in figure 4. I n  figure 5 ( a ) ,  the contours of downstream 
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FIQURE 5.  Enlargement of oval neutral region for aiding mixed convection (2 = 4) in air (Pr = 
0.733), showing: (a) contours of constant cq; ( b )  contours of constant A .  

amplification rate, a,, have an oval shape. Outside and to the right of the oval neutral 
curve (a, = 0 ) ,  several contours of ai > 0 are also shown. Since a, > 0, the 
disturbances there are damped until they reach the primary neutral curve 
downstream. 

Apparently, this oval region of instability disappears when the forced flow 
becomes large compared to  the buoyancy-induced flow. Mucoglu & Chen (1978) have 
considered mixed convection with weak buoyancy effects and did not observe this 
feature. The vast literature on the instability of the Blasius flow also indicates that 
the oval unstable region is not present when there is no buoyancy. 

The A contours in figures 4 and 5 ( b )  are computed by integrating (4.5) from the 
value of G at  which instability first occurs. For disturbance component frequencies 
corresponding to B < 0.37, instability first occurs on the oval neutral (ai = 0) curve, 
while for B > 0.37, instability first arises on the primary neutral (ai = 0) curve. 



Instability in a mixed-convection boundary layer 125 

However, the computations revealed that A x 0 on the primary neutral curve even 
for B < 0.37. That is, amplification inside the oval region, and subsequent damping 
just upstream of the primary neutral curve results in almost no contribution in the 
calculation of the A contours. 

The constant-A contours in the oval region indicate a maximum value of about 
A = 0.0043. That is, the disturbance amplitudes increwe only by a factor of about 
1.0043 over this separated region of instability. The A contours show the selective 
amplification of the frequency B x 0.24 in this region. This frequency is, perhaps not 
surprisingly, the same as a t  the nose of the primary neutral curve. 

Figure 6 shows the magnitudes of eigenfunctions, normalized by their respective 
maxima, for a point on the oval neutral curve of figure 5 (b). These eigenfunctions are 
approximately one order of magnitude smaller than those found on the primary 
neutral curve, although both were scaled to unity by setting B, = 1 in (4.1). 

Downstream of the primary neutral curve, more rapid amplification occurs, as 
seen from thc constant-A contours of figure 4. This figure also shows that the aiding 
forced flow effect is destabilizing just downstream of the neutral stability curve. 
However, further downstream, the spatial amplification rate for mixed convection is 
much smaller. Near G x 150, the most amplified disturbances of the natural- and 
mixed-convection flows have about the same magnitude. Further downstream, 
disturbances in the mixed-convection flow grow less rapidly downstream. 

Explanation of slower downstream amplijcation 
Krishnamurthy & Gebhart (1989) have proposed an explanation for this effect, for 

aiding mixed-convection flows in air. The acceleration formula of Lin (1945) was used. 
This strictly applies only to the parallel flow of an inviscid fluid with a transverse 
velocity gradient. Assuming that the velocity gradient is in the y-direction, Lin 
showed that if a fluid element has an excess or defect of vorticity over the base flow, 
then i t  is subjected to  an acceleration, a, in the y-direction, given by 

where v' is a velocity component in the y-direction due to the vorticity excess or 
defect, a y )  is the vorticity distribution in the undisturbed flow, and 5' is the vorticity 
excess or defect. Therefore, the direction in which the fluid element is accelerated 
depends upon the signs of dc,dy and c. 

A disturbance in the fluid motion may be regarded as the cross-stream exchange 
of two fluid elements with different vorticities. If there is a point of inflexion in the 
velocity profile (that is, if dc/dy = 0 at some point in the vorticity field), then the 
exchanged fluid elements may each be accelerated away from their layers of origin. 
This is because will have a different sign for the two fluid elements, and dr/dy 
changes sign across the inflexion point. Physically, counter-rotating vortices may 
arise which accelerate the fluid elements away from their original locations. The fluid 
motion is not stable under these circumstances. 

The undisturbed flow vorticity gradients, for aiding, opposing and natural 
convection in air, are plotted as a function of 7 in figure 7. It is seen that the 
magnitude of the vorticity gradient near dc,dy = 0 is smaller for aiding mixed 
convection than for natural convection. This led Krishnamurthy & Gebhart (1989) to 

5-2 
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FIGURE 6. Magnitudes of the eigenfunctions for aiding mixed convection ( R  = 4) in air (Pr = 0.733), 
normalized by their respective maxima, for the point (G = 17.94, B = 0.225) on the neutral curve 
of figure 5 ( b ) .  

0 1 2 3 4 5 6 7 8 
7 

FIGURE 7 .  Vorticity fields for aiding mixed convection ( E  = 0.5), opposing mixed convection 
( E  = -0.25), and natural convection ( E  = 0) in air (Pr = 0.733). 

-0.21 ' I " ' " " " " I ' 

conclude that there is less tendency for fluid elements to move away from their layers 
of origin. Then, aiding mixed-convection flow is more 'stable' than natural 
convection. This explains the slower downstream amplification of the mixed- 
convection flow. However, the theory is inconsistent with the initial instability at 
lower G .  

5.2. Opposing mixed convection in air 
Constant-amplification contours for opposing mixed convection in air ( R  = - 2, 
Pr = 0.733) are shown in figure 8 by the dashed lines. Natural convection is again 
shown for comparison as solid curves. For opposing mixed-convection flows, it is 
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FIGURE 8. Amplification contours for opposing mixed convection (---, R = - 2) and natural 
convection (-, R = 0) in air (Pr = 0.733). The horizontal lines are the most amplified frequencies 
downstream. 

necessary to avoid conditions for which boundary-layer separation occurs, since the 
analysis is then inappropriate. For air with = -2, separation does not occur over 
the range of G considered here. 

Flows with an opposing effect are seen in figure 8 to be initially more stable than 
natural convection. However, downstream disturbance amplification is much faster. 
This faster downstream amplification is also consistent with (5.1). Figure 7 shows 
that the vorticity gradients of opposing mixed-convection flows near d[/dy = 0 are 
larger than for a natural-convection flow. Therefore, according to (5.1), the 
acceleration of fluid elements away from their original locations will be greater in 
opposing mixed-convection flows than in natural-convection flows. 

The most amplified frequency component for opposing mixed-convection flow, to 
A = 8, is B = 0.32, as shown by the horizontal dashed line on figure 8. This is a t  a 
lower frequency than the most amplified component for natural convection, B = 
0.41, shown as a solid horizontal line. 

Disturbance-amplitude functions 
The magnitudes of typical eigenfunctions for aiding, opposing, and natural 

convection in air are shown in figure 9, normalized by their respective maxima. Each 
plot contains two pairs of eigenfunctions. One is for the point on the neutral curve 
corresponding to the most amplified frequency component downstream to A = 8. The 
second pair is for the same frequency on the A = 4 contour. The locations on the 
stability planes for which the eigenfunctions are shown are represented by points 
(a-f) on figures 4 and 8. 

The eigenfunction distributions across the disturbance boundary region are seen to 
be generally preserved as they are convected downstream. The downstream growth 
of $(q)  accounts for only about 4% of the total downstream growth of f .  This is 
consistent with the parallel-flow approximations. The maxima of the eigenfunctions 
occur near the point of inflexion of the velocity profile, q x 1.8. This further 
emphasizes the importance of inflexion points in these instability mechanisms. 
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7 
FIGURE 9. Magnitudes of the eigenfunctions in air (Pr = 0.733), normalized by their respective 
maxima, for: (a )  opposing mixed convection (R = -2) ,  a t  points e and f on figure 8;  ( b )  natural 
convection ( R  = 0 ) ,  at points c and d on figure 4; ( c )  aiding mixed convection ( R  = 4), at points a 
and b on figure 4. 
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FIGURE 10. Amplification contours for aiding mixed convection (---, R =  1) and natural 
convection (-, R = 0) in water (Pr = 6.7). The horizontal lines are the most amplified 
frequencies downstream. 
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FIQURE 11. Amplification contours for opposing mixed convection (---), R = -0.5) and natural 
convection (-, R =  0) in water (Pr = 6.7). The horizontal lines are the most amplified 
frequencies downstream. 

5.3. Aiding mixed convection in water 
The amplification plane for aiding mixed convection in water (I? = 1, Pr = 6.7) is 
shown in figure 10, as dashed lines. Comparable natural-convection contours for 
water (i? = 0, Pr = 6.7) are shown as solid lines. Other liquids which have Prandtl 
numbers near 6.7 are methanol at 30 "C and saturated Freon 11 near -50 "C. 

The most amplified frequency component to A = 8 is B = 0.32. This is higher than 
B = 0.28 for natural convection. The same qualitative behaviour was seen for air. 
However, the forced flow effects are much smaller in water. Aiding mixed convection 
is slightly less stable than natural convection. The acceleration equation (5.1) does 
not explain this difference. This implies that buoyancy plays an important role not 
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FIGURE 12. Magnitudes of the eigenfunctions in water (Pr = 6.7), normalized by their respective 
maxima, for: (a) opposing mixed convection ( R  = -#), at points k and 2 on figure 11  ; ( b )  natural 
convection ( R  = O),  at points i and j on figure 10; (c) aiding mixed convection ( R  = l ) ,  at points 
g and h on figure 10. 



Instability in a mixed-convection boundary layer 131 

included in that formulation. In  air, the location of the velocity profile inflexion point 
(at 7 x 1.8) is well inside the thermal boundary layer (see figure 2). However, in 
water, the inflexion point (at 7 x 1.4) lies near the outer edge of the thermal layer (see 
figure 3). This difference in buoyancy force distribution apparently causes large 
effects. 

Some evidence for a secondary unstable region a t  low G was also found for aiding 
mixed convection in water. However, converged eigenvalues and eigenfunctions 
could not be obtained. Lce et al. (1987 b )  did find secondary neutral curves for aiding 
mixed convection for Pr = 7.0. The calculations reported here were performed in 
double precision. These calculations suggest that a secondary neutral curve may 
exist. However, higher precision is required to  resolve this question. 

5.4. Opposing mixed convection in water 
Figure 11 shows constant-A contours for opposing mixed convection in water 
(R = -;, Pr = 6.7) as dashed lines. Boundary-layer separation does not occur for any 
values of G considered in these calculations. The flow is slightly more stable than the 
corresponding natural-convection flow, both a t  the location of neutral stability, and 
further downstream. However, these effects are very small. The most amplified 
frequency component downstream to A = 8 is B = 0.26. This is compared to B = 
0.28 for natural convection. 

Eigenfunctions for water (Pr = 6.7) are compared in figure 12. The locations on the 
stability plane are represented by points (g-Z) on figures 10 and 11.  The temperature 
disturbance layer is much thinner than the corresponding stream-function 
disturbance layer. The shapes of the eigenfunctions are once again preserved 
downstream. However, the maxima occur a t  7 x 1,  not at the point of inflexion of 
the undisturbed velocity profile a t  ?,I x 1.4. 

- 

6. Conclusions 
The stability and disturbance-amplification characteristics of a mixed-convection 

boundary layer adjacent to  a vertical, isothermal flat surface have been determined. 
Linear stability theory and the parallel-flow approximations were used to define an 
eigenvalue problem which was solved numerically for Pr = 0.733 and 6.7. 

Results are given for aiding and opposing mixed convection in air and water, as 
well as for the corresponding natural-convection flows. For aiding flows in air, an 
additional region of instability was found, detached from the conventional ‘primary ’ 
neutral curve. However, disturbance growth in this region was very small. 
Significant disturbance growth begins downstream of the primary neutral curve. 
However, this growth is a t  a slower rate than in natural convection. Downstream 
disturbance growth is faster for an opposing mixed-convection effect in air. Only a 
narrow band of disturbance frequency components is amplified downstream, in both 
aiding and opposing mixed convection. The effect of an aiding forced flow is to 
increase the frequency level of this band, over the corresponding frequency level for 
natural convection. Opposing flows caused the opposite effect. 

For mixed-convection flows in water, the effect of a free-stream velocity is much 
smaller than in air. The aiding effect in water is slightly destabilizing. The opposing 
flows are slightly more stable. As in air, the level of the selectively amplified 
frequency band increases with an aiding free-stream and decreases with an opposing 
free stream. Calculations also suggest a secondary detached unstable region in aiding 
mixed convection in water. However, its existence could not be confirmed. 
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These results were not compared directly with experiment, since no data are 
available for the instability of mixed convection adjacent to a vertical isothermal 
surface. Carey & Gebhart (1983) reported data for aiding mixed convection in air 
adjacent to a uniform-heat-flux surface. Good agreement with theory was found. The 
present results are qualitatively similar to those of Carey & Gebhart (1983), except 
that they did not find a secondary unstable region. Experiments are required to 
verify this unusual feature. Further experimental results are also needed for 
opposing mixed convection in gases, and for aiding and opposing mixed convection 
in liquids. 
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